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In the supplementary material, we provide details about
the image layer loss Limg, report quantitative results on re-
flection recovery, conduct additional ablation studies, pro-
vide a comparison on model size and efficiency, and con-
duct additional qualitative comparisons with state-of-the-art
reflection separation methods.

7. Details of the image layer loss
In this section, we provide details of the image layer loss
Limg (corresponding to footnote 1 in the main paper), which
consists of several image- or feature-level loss functions fol-
lowing previous reflection separation methods [2, 3, 6, 12,
16] to impose constraints on the visual quality of estimated
transmission and reflection layers or to exploit the inherent
relationship between the two layers. We denote the esti-
mated transmission and reflection layers as T̃ and R̃ and
their ground truths as T and R, respectively, and mixture
images are denoted as M.
Pixel loss Lpix. We apply the l1 distance to penalize the
pixel-wise discrepancy on estimated images and gradients
with their ground truths, which is formulated as:

Lpix =∥T− T̃∥1 + ∥R− R̃∥1
+λ(∥∇T−∇T̃∥1 + ∥∇R−∇R̃∥1),

(6)

where ∇ represents the gradient operator, and λ is set to 1.
Structural similarity loss Lssim. We incorporate the struc-
tural similarity index (SSIM) to form a loss function, which
conforms to human perception and evaluates the similarity
in luminance, contrast, and structure between image pairs.
The structural similarity loss Lssim [12] is defined as:

Lssim = 2− (SSIM(T, T̃) + SSIM(R, R̃)). (7)

Perceptual loss Lper. To measure the multi-scale discrep-
ancy between estimated images layers and their ground
truths in the feature domain, we utilize the VGG-19 model
to extract low-level and high-level image features and cal-
culate the perceptual loss [16] as:

Lper =
∑
k

ϕk(Dvgg
k (T, T̃) +Dvgg

k (R, R̃)), (8)
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where {ϕk} are the weights for balancing multi-scale fea-
ture discrepancies, and Dvgg

k represents the l1 distance be-
tween features extracted from the k-th convolutional layer
in the VGG-19 model. We adopt the same selection of con-
volutional layers and the setting of {ϕk} as [16].
Exclusion loss Lexc. To ensure the gradient irrelevance be-
tween estimated transmission and reflection layers for di-
minishing content residues from each other, we employ the
exclusion loss [16] as:

Lexc =
1

M

M−1∑
m=0

∥Θ(T̃↓m, R̃↓m)∥F, (9)

Θ(T̃, R̃) = tanh(ξ1|∇T̃|)⊙ tanh(ξ2|∇R̃|), (10)

where ∥ · ∥F denotes the Frobenius norm, T̃↓m and R̃↓m

represent down-sampling T̃ and R̃ by a factor of 2m with
bilinear interpolation (2M at most where M = 3 as in [16]),
⊙ is the element-wise multiplication, and ξ1 and ξ2 are the
normalization factors as in [16].
Reconstruction loss Lrec. To constrain the relation be-
tween transmission layers, reflection layers, and mixture
images, we employ a reconstruction loss following [6]:

Lrec = ∥T̃+ R̃+Ω(T̃, R̃)−M∥)1, (11)

where Ω(T̃, R̃) is a residue term estimated from an addi-
tional learnable residue module Ω(·) [6], which is designed
for handling the non-linearity in the mixture image forma-
tion process caused by the non-linear mapping and dynamic
range clipping [4] in the camera pipeline.

Overall, the image layer loss is formulated as:

Limg = ω1Lpix+ω2Lssim+ω3Lper+ω4Lexc+ω5Lrec. (12)

Following previous methods [1, 6, 12, 16], the weights are
set as ω1 = 1, ω2 = 1, ω3 = 0.01, ω4 = 1, and ω5 = 0.2.

8. Quantitative results on reflection recovery
In this section, we conduct quantitative experiments on
three subsets (i.e., Postcard, Object, and Wild) of a real
reflection separation dataset SIR2 [13] with our manually
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Table 3. Quantitative results in terms of PSNR and SSIM on three subsets of the SIR2 dataset [13] for evaluating the recovery of reflection
layers, compared with state-of-the-art single-image reflection separation methods [1, 5–7, 12, 16]. Averaged results are shown at the
bottom. ↑ indicates larger values are better. Bold numbers indicate the best-performing results.

Dataset (size) Metrics
Methods

Zhang et al. [16] CoRRN [12] IBCLN [7] Dong et al. [1] YTMT [5] DSRNet [6] Ours

Postcard (199)
PSNR↑ 17.02 17.68 17.95 18.13 17.53 17.66 18.37
SSIM↑ 0.519 0.574 0.528 0.592 0.557 0.566 0.611

Object (200)
PSNR↑ 21.87 22.52 22.08 23.62 22.91 23.56 23.88
SSIM↑ 0.531 0.561 0.524 0.688 0.605 0.669 0.699

Wild (101)
PSNR↑ 20.33 20.93 20.82 21.53 21.22 21.64 21.94
SSIM↑ 0.544 0.568 0.554 0.606 0.581 0.613 0.627

Average (500)
PSNR↑ 19.63 20.27 20.18 21.01 20.43 20.82 21.30
SSIM↑ 0.529 0.568 0.532 0.633 0.581 0.617 0.649

Table 4. Ablation studies on the network structure and the size of training dataset.

CLIP-L-encoder Llama2-L-encoder AGAM CLIP-I-encoder AGIM Cross att 50K data 13K data PSNR↑ SSIM↑
✓ ✓ ✓ ✓ 25.72 0.914

✓ ✓ ✓ ✓ 25.68 0.917
✓ ✓ ✓ ✓ 24.80 0.891
✓ ✓ ✓ ✓ 24.92 0.903
✓ ✓ ✓ ✓ 25.55 0.909

annotated language descriptions (as mentioned in Sec. 4 of
the main paper) to evaluate the recovery of reflection layers
(corresponding to footnote 2 in the main paper), since other
datasets such as Real20 [16] and Nature [7] do not provide
ground truths of reflection layers. We compare the proposed
method with state-of-the-art single-image reflection separa-
tion methods [1, 5–7, 12, 16]. PSNR and SSIM are selected
as error metrics. As shown in Table 3, the proposed method
achieves the best performance, which indicates the efficacy
of introducing language descriptions for relieving the ambi-
guity in separating strong reflections from mixture images.

9. Additional ablation studies
Ablation studies on the network structure. We conduct
ablation studies on the network structure to investigate the
effectiveness of the language encoder, global image feature,
and interaction module by replacing the language encoder
of CLIP [10] with the encoder of a large language model
Llama2 [11] (with 13B parameters), replacing the AGAM
with the global image feature encoder of CLIP [10], and
replacing the AGIM with standard cross-attention modules,
respectively. As shown in Table 4, the proposed method (the
first row) achieves competitive results with the variant (the
second row) using the language encoder of Llama2 [11],
which indicates our generalizability. Besides, directly us-
ing global image features from pretrained CLIP [10] (the
third row) leads to performance degradation since they are
trained for classification. Using standard cross-attention
modules also degrades the performance (the fourth row),
indicating the efficacy of AGIM for channel rearrangement.
Ablation studies on the network training. We investi-
gate the influence of the training dataset size by training our
model with 13,000 images from our dataset following [1].

Table 4 shows a slight performance decrease with fewer
training data (the fifth row) while we still outperform base-
lines (Table 1 of main paper). Besides, we conduct an abla-
tion study by setting loss coefficients γ1 and γ2 in Eq. (4)
of the main paper to 0, 0.5, 1.0, and 2.0, respectively. As
shown in the left part of Figure 6, setting both γ1 and γ2 as
0.5 yields the best results. In addition, we investigate the
drop rate of language descriptions mentioned in Sec. 3.5 of
the main paper. As depicted in the right part of Figure 6,
the drop rate of 30% strikes an optimal balance, which is
adopted in the paper.
Ablation studies on language descriptions. We investi-
gate different types of language descriptions as shown in
Figure 7. Using the simplified description achieves com-
parable performance to the complete matched description,
while using the unmatched description fails in reflection
separation, indicating the efficacy of incorporating language
modality. Besides, since reflection layers are sometimes too
dark and blurry to be recognizable [12] which might make
descriptions of reflection layers unobtainable, we empiri-
cally set I1 and I2 to be transmission and reflection layers,
respectively. If exchanging the order of descriptions (shown
in Figure 8), though results are degraded due to different
statistics of transmission and reflection layers, the contents
still conform to descriptions, validating the effectiveness of
language guidance.

10. Comparison on model size and efficiency
We show the model size (number of parameters), compu-
tational cost (FLOPs), and inference time of the proposed
method and state-of-the-art single-image methods in Table
5. The input image size is set as 224× 288, and we run the
inference on an Nvidia RTX 2080 Ti GPU. While having the



Figure 6. Ablation studies on coefficients of γ1 and γ2 (left part) and drop rates of language descriptions (right part).

No language description Matched language description
Mixture Transmission Reflection Description Transmission Reflection

Description Transmission Reflection Description Transmission Reflection
Simplified language description Unmatched language description

A painting of Mona 
Lisa

on a wall

Painting,
wall

A ball on 
a table

Figure 7. Ablation studies on different types of language descriptions.

Mixture image
𝐋𝐋1: A view of 
buildings and 

streets at night

𝐋𝐋2: A man in a 
room with a 

painting on the wall

Description 𝐈𝐈1 𝐈𝐈2

𝐋𝐋1: Transmission       𝐋𝐋2: ReflectionInput image

𝐋𝐋1: A man in a 
room with a 

painting on the wall

𝐋𝐋2: A view of 
buildings and 

streets at night

Description 𝐈𝐈1 𝐈𝐈2

𝐋𝐋1: Reflection       𝐋𝐋2: Transmission

Figure 8. Results of exchanging the order of language descriptions.

Table 5. Comparisons on the model size, computational cost, and inference time, compared with single-image methods [1, 5–7, 12, 16].

Metric
Method

Zhang et al. [16] CoRRN [12] IBCLN [7] Dong et al. [1] YTMT [5] DSRNet [6] Ours

Params 22.06M 59.51M 21.61M 10.93M 73.43M 137.63M 75.54M
FLOPs 99.66G 75.53G 386.16G 329.28G 437.16G 406.97G 320.95G

Time (s) 0.028 0.017 0.034 0.044 0.062 0.115 0.056

comparable model size, computational cost, and inference
time with recent single-image methods (e.g., YTMT [5] and
DSRNet [6]), the proposed method outperforms them in re-
flection separation as shown in Table 1 of the main paper,
indicating our trade-off between practicality and efficiency.

11. Additional qualitative results
In this section, additional qualitative experiments are con-
ducted on real datasets to show the effectiveness and unique
advantages of the proposed language-guided reflection sep-
aration method. We compare with several single-image

methods including DSRNet [6], YTMT [5], Dong et al. [1],
IBCLN [7], CoRRN [12], and Zhang et al. [16]. Besides,
a representative diffusion-based image generation method,
i.e., ControlNet [15], is selected to show the performance
of the prevailing diffusion models on reflection separation.
We also compare with a multi-image reflection separation
method Liu et al. [9] to demonstrate the robustness of the
proposed method. Details are as follows.

Comparison with ControlNet [15]. ControlNet [15] is
a conditional generative model modified from large pre-
trained text-to-image diffusion models, achieving remark-



able performance in image generation and editing. To make
ControlNet [15] fit our input setting, we finetune it fol-
lowing the official instruction1 by using mixture images as
source images (control images), language descriptions of
transmission layers as prompts, and transmission layers as
target images. Qualitative results on the proposed REFOL
dataset are shown in Figure 9. It can be observed that Con-
trolNet [15] performs modifications on mixture images in
a generative manner, e.g., the portrait in the first example
is infused with the blue hue and the blue butterfly in the
second example is transformed into cyan, which leads to
a divergence in the content of generated results from orig-
inal mixture images, indicating that ControlNet [15] can-
not be trivially adapted to the task of reflection separa-
tion. By utilizing global scene contextual information from
language descriptions to interact with visual features for
channel rearrangement (mentioned in Sec. 3.2), the pro-
posed method outperforms single-image methods in achiev-
ing a more thorough separation of transmission and reflec-
tion layers and obtains results whose image content re-
mains faithful to input images. For instance, as shown in
Figure 9, the proposed method distinguishes reflections of
visitors from the portrait in the first example while other
single-image methods fail in recognizing the visitors, and
in the second example, the bookshelf and the white door are
also correctly separated from the butterfly by the proposed
method, indicating the efficacy of language descriptions.

Comparison with Liu et al. [9]. We further conduct exper-
iments on real datasets collected for multi-image reflection
separation [8, 14]. We compare the proposed method with
the aforementioned single-image methods [1, 5–7, 12, 16]
and a multi-image method Liu et al. [9] which leverages
different motions of the two layers to guide the separation.
Qualitative results are shown in Figure 10. By introduc-
ing language descriptions, the proposed method achieves
comparable performance with Liu et al. [9] in reflection
separation, e.g., the trash bin and the cabinet in the first
example and the walking man in the second example of
Figure 10, where other single-image methods fails in dis-
cerning the content of reflection layers. Moreover, multi-
image reflection separation methods [8, 9, 14] typically re-
quire additional images (with the quantity ranging from one
to four) with specialized capture settings compared with
single-image methods, while the proposed method only de-
mands a maximum of two additional language descriptions
for network inputs, which significantly relieves the burden
of data acquisition and storage associated with multi-image
methods. Concurrently, the proposed method maintains the
broad applicability as single-image methods, indicating its
potential for practical applications.

1https://github.com/lllyasviel/ControlNet/blob/
main/docs/train.md
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Figure 9. Qualitative comparison of estimated transmission and reflection layers on the proposed REFOL dataset, compared with several
state-of-the-art single-image methods [1, 5–7, 12, 16] and a diffusion-based method ControlNet [15]. Please zoom in for details.
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Figure 10. Qualitative comparison of estimated transmission and reflection layers on real data from [8] and [14], compared with several
state-of-the-art single-image methods [1, 5–7, 12, 16] and a multi-image method Liu et al. [9]. Please zoom in for details.
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