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APPENDIX A
ADDITIONAL QUALITATIVE COMPARISONS ON REAL
DATA

To evaluate the performance of the proposed method
(PAR2Net), we conduct more qualitative comparisons on
the PORTABLE and NATURAL datasets in Fig. 13 and Fig. 14.
We compare PAR2Net with our preliminary work HZ21 [3]
and a single-image method DX21 [1] which is selected
to represent state-of-the-art single-image methods (since it
performs best among the five single-image methods in the
quantitative comparison, i.e., in Table 1 of the main paper).
In addition, we display more results on the PHONE dataset
in Fig. 15 by comparing PAR2Net with DX21 [1] to show our
generalization capacity to limited-FoV images.

APPENDIX B
DETAILS OF THE UNSUPERVISED VERSION FOR AB-
LATION STUDY

In the ablation study (Sec. 6.2 in the main paper), we im-
plement an unsupervised version of the proposed method
inspired by Han et al. [2], which compares the different
learning strategies on the panoramic image reflection re-
moval task. We retain the network architecture of the pro-
posed method and employ the loss functions in [2] to adapt
the unsupervised learning strategy. We update the network
parameters with 1000 iterations for each test image.
Training recovery modules. Following Han et al. [2], we
first train recovery modules for reflection refinement and
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transmission recovery by recovering input images, i.e., re-
covering mixture images M and reflection scenes RS by
using features extracted from the feature extraction stage
(i.e., FM and FRS

in Sec. 4.2.1 of the main paper). In detail,
we utilize the auto-encoder loss LA [2] defined as follows:

LA = Lrec(M,Mest) + Lrec(RS,R
est
S ), (18)

where Mest and Rest
S denote mixture images and reflection

scenes obtained by the recovery module, and Lrec measures
the differences in the color and gradient domains between
two images [2].
Training the complete network. After training the recovery
modules, we train the complete network module as a whole.
The reconstruction loss Lrecon proposed in Sec 4.3 of the
main paper is retained to constrain the search space for es-
timating reflection layers and transmission scenes. Besides,
we adopt the gradient prior loss Lgrad in [2] to leverage the
independence of two estimated components (i.e., Rest

L and
Test

S ) in the gradient domain. For exploiting the correlations
of reflection scenes and layers, we use the reflection loss Lref
in [2] which is defined as:

Lref = Lmse(C
ref ,Rest

L ) + αLmse(G
ref ,∇Rest

L ), (19)

where Cref and Gref denote reference images in the color
domain and gradient domain (obtained by the reference
image generation method of [2]), respectively, and we set
α as 10 following [2]. In general, the total loss for training
the complete network is defined as:

Ltotal = ω1Lrecon + ω2Lgrad + ω3Lref. (20)

Following previous methods [1], [2], the weights are empir-
ically set as ω1 = 1, ω2 = 3, and ω3 = 5.
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Fig. 13: More qualitative results on the PORTABLE dataset. Inputs and results are shown in the same manner as Fig. 10 of
the main paper. Please zoom in for details.
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Fig. 14: More qualitative results on the NATURAL dataset. Inputs and results are shown in the same manner as Fig. 11 of
the main paper. Please zoom in for details.
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Fig. 15: More qualitative results on the PHONE dataset, compared with the state-of-the-art single-image method DX21 [1].
Close-up views are displayed at the bottom of images. Please zoom in for details.
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